
Using Guix for scientific, reproducible, and
publishable experiments

Ten Years of Guix – September 16, 2022

Philippe SWARTVAGHER
Inria Bordeaux – Sud-Ouest

 2

Few words about me

● PhD Student @ Inria Bordeaux
● HPC : interactions between task-based runtime systems

and communication libraries
● Occasional Guix user

– For my experiments
– Maintainer of several packages in Guix-HPC channel

 3

Agenda

1. Software environment

2. Experiments without Guix

3. Experiments with Guix

4. Reproducible experiments

 4

Experimental protocol

1. Development, tries and failures on my laptop

2. Experiments on clusters

• Job scheduler (SLURM, OAR, …)

• Non-interactive: submit a job executing a script, wait for its execution

• At one point: experiments whose results will be published

 5

My software stack

Task-based runtime system

User application

Machine

StarPU

Chameleon

Daltons, PlaFRIM, Grid5k,
Occigen, ...

Network
communications Traces nmad FxT

 6

My software stacks!

StarPU
--enable-nmad

Chameleon

Machines

nmad
madmpi.conf FxT

StarPU

Chameleon

Machines

nmad
madmpi-mini.conf FxT

StarPU

Chameleon

Machines

OpenMPI FxT

StarPU
--enable-nmad --without-fxt

Chameleon

Machines

nmad
madmpi.conf

● Several possible combinations of building parameters
● Rebuild the whole stack!

 7

Experimental protocol and variants

Comparaison of several
variants of the same stack :

• nmad
• madmpi
• openmpi

A main variant1. Development, tries and failure on my laptop

2. Experiments on clusters

• Job scheduler (SLURM, OAR, …)

• Non-interactive: submit a job executing a script,
wait for its execution

• At one point : experiments whose results will be
published

 8

Several variants simultaneously

 How to switch from a variant to another one?

● Rebuild everything?
● Too long
● Prevent using simultaneously different variants

 9

Level 0: PATH, LD_LIBRARY_PATH, etc

 Each variants installed in its own folder hierarchy

● --prefix=$HOME/builds/nmad/ at compile-time
● Small script to wrap all these commands: ./build.sh nmad && ./build.sh madmpi

● PATH=$HOME/builds/nmad/bin LD_LIBRARY_PATH=$HOME/builds/nmad/lib to run

● OK in scripts for non-interactive jobs
● But in interactive jobs: need to remember all variables and paths to define, need to
type them...

 10

Level 1: modules

 Each variants installed in its own folder hierarchy

● --prefix=$HOME/builds/nmad/ at compile time
● Small script to wrap all these commands: ./build.sh nmad && ./build.sh madmpi

● PATH, LD_LIBRARY_PATH, … defined in modules files

module load nmad

module unload nmad

module load madmpi

● OK in scripts for non-interactive jobs
● OK in interactive scripts

set name nmad
set prefix $HOME/builds/nmad/

prepend-path PATH $prefix/bin
prepend-path LIBRARY_PATH $prefix/lib
prepend-path LD_LIBRARY_PATH $prefix/lib
prepend-path INCLUDE $prefix/include
prepend-path C_INCLUDE_PATH $prefix/include
prepend-path CPLUS_INCLUDE_PATH $prefix/include
prepend-path PKG_CONFIG_PATH $prefix/lib/pkgconfig

Very common on HPC clusters

 11

Final boss of level 1

 Harder :
● Comparaisons between branches of the same library
● Comparaisons between commits of the same library
● Comparaisons with and without a patch applied to a library

● Different folders, module files, … again?
● In this case, source code is modified, not the result of its compilation!

● How to know which source code was used to build the software we are using...
● Right now?
● 6 months ago?

 12

Guix!

● No package installed with Guix (no guix install)

● Use of guix shell instead

● Required packages are built on-the-fly

./build.sh --starpu --chameleon openmpi
module load openmpi
module load starpu-openmpi
module load chameleon-openmpi
mpirun ...

guix shell --pure chameleon -- mpirun ...

 13

Several variants simultaneously

● openmpi variant:

• guix shell --pure chameleon -- mpirun …
• Chameleon depends on StarPU, which depends on OpenMPI
• Default variant

● nmad variant:

• guix shell --pure chameleon --with-input=openmpi=nmad -- mpirun …
● madmpi variant:

• guix shell --pure chameleon --with-input=openmpi=nmad-mini -- mpirun …
● Variant with fxt :

• guix shell --pure chameleon --with-input=starpu=starpu+fxt -- mpirun …

with Guix !

StarPU

Chameleon

nmad / OpenMPI
/ ... FxT

Existing packages in Guix-HPC

 14

Package transformations ❤️
● https://guix.gnu.org/en/manual/devel/en/html_node/Package-Transformation-Options.html
● Simple package substitution:

● guix shell --pure chameleon --with-input=openmpi=nmad -- mpirun …
● guix shell --pure chameleon --with-input=openblas=mkl -- mpirun …

● Use a specific upstream Git branch:
● guix shell --pure chameleon --with-branch=starpu=coop-mcast -- mpirun …

● Use a specific upstream commit:
● guix shell --pure chameleon --with-
commit=starpu=acae6e78df7a9475bbfbd26e33fe324b1f7bedce -- mpirun …

● Apply a patch to package source code:
● guix shell --pure chameleon --with-patch=chameleon=./wait-graph.patch -- mpirun …

https://guix.gnu.org/en/manual/devel/en/html_node/Package-Transformation-Options.html

 15

Package transformations ❤️

● Combinations of several transformations!
● Be careful to transformation order:

● --with-input=openmpi=nmad --with-branch=nmad=master : OK, master branch of nmad
● --with-branch=nmad=master --with-input=openmpi=nmad : version specified in nmad package

● Visualize applied transformations with:
● guix graph -M 4 chameleon --with-input=openmpi=nmad --with-branch=nmad=master | xdot -

 16

Final boss of level 1

 Harder :
● Comparaisons between branches of the same library
● Comparaisons between commits of the same library
● Comparaisons with and without a patch applied to a library

● Different folders, module files, … again?
● In this case, source code is modified, not the result of its compilation!

● How to know which source code was used to build the software we are using...
● Right now?
● 6 months ago?

with Guix !

 17

Final boss of level 1

 Harder :
● Comparaisons between branches of the same library
● Comparaisons between commits of the same library
● Comparaisons with and without a patch applied to a library

● Different folders, module files, … again?
● In this case, source code is modified, not the result of its compilation!

● How to know which source code was used to build the software we are using...
● Right now?
● 6 months ago?

with Guix !

Very easy!

 18

Final boss of level 1

 Harder :
● Comparaisons between branches of the same library
● Comparaisons between commits of the same library
● Comparaisons with and without a patch applied to a library

● Different folders, module files, … again?
● In this case, source code is modified, not the result of its compilation!

● How to know which source code was used to build the software we are using...
● Right now?
● 6 months ago?

with Guix !

Very easy!

Not needed!

 19

Reproducibility: the problem

guix shell --pure chameleon -- mpirun …

… 6 months later …

guix pull

guix shell --pure chameleon -- mpirun …

● chameleon != chameleon
● Different package version of chameleon
● Different versions of chameleon’s dependencies

 20

Reproducibility: the solution

● Export currently used channels (and their versions):

guix describe -f channels > channels.scm

● Explicitly use pinned channels:

guix time-machine --channels=./channels.scm --
 shell --pure chameleon -- mpirun …

● Backup channels.scm : to be sure to execute the same
code, even 6 months later

(list (channel
 (name 'guix)
 (url "https://git.savannah.gnu.org/git/guix.git")
 (branch "master")
 (commit
 "ec66f84824198f380d20126d3e4b2ea795fd205a")
 (introduction
 (make-channel-introduction
 "9edb3f66fd807b096b48283debdcddccfea34bad"
 (openpgp-fingerprint
 "BBB0 2DDF 2CEA F6A8 0D1D E643 A2A0 6DF2 A33A 54FA"))))
 (channel
 (name 'guix-hpc-non-free)
 (url "https://gitlab.inria.fr/guix-hpc/guix-hpc-non-free.git")
 (branch "master")
 (commit
 "58aaac8c18773d900511d441e935145d73cdfc5e"))
 (channel
 (name 'guix-hpc)
 (url "https://gitlab.inria.fr/guix-hpc/guix-hpc.git")
 (branch "master")
 (commit
 "74840c47b744ad7342e7a86852831009a2831630")))

 21

Reproducibility: making scripts available

● Making experiments (scripts) with reproducibility in mind
● Public Git repository with scripts and instructions for reproducibility:

● Detailed README to understand what is done, how, where, ...

● Contains channels.scm
● Instructions to use also without Guix

● Examples :
● https://gitlab.inria.fr/pswartva/paper-model-memory-contention-r13y
● https://gitlab.inria.fr/pswartva/paper-starpu-traces-r13y

https://gitlab.inria.fr/pswartva/paper-model-memory-contention-r13y
https://gitlab.inria.fr/pswartva/paper-starpu-traces-r13y

 22

Reproducibility: in papers

● Ask SoftwareHeritage for a snapshot of your repository
● Repository available forever
● https://archive.softwareheritage.org/save/
● Provide a unique identifier, to find the saved repository

● In the paper:

https://archive.softwareheritage.org/save/

 23

Conclusion: Guix’s advantages

● Very easy to move from a machine to another one*,**
● No wasted time to reinstall, recompile, look for appropriate modules, ...
● *As long as the job scheduler is the same
● **Require to parametrize/factorize scripts from the beginning

● More confidence in experiment executions
● Especially if I need to run them again (with different parameter, ...)

 24

Conclusion: future work

● Use manifest files
● Put all parameters of guix shell in a file
● Good way to factorize code?

● Use on a machine without Guix
● guix pack

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24

