Using Guix for scientific, reproducible, and
publishable experiments

Ten Years of Guix — September 16, 2022

Philippe SWARTVAGHER
Inria Bordeaux — Sud-Ouest

Few words about me

* PhD Student @ Inria Bordeaux

* HPC : interactions between task-based runtime systems
and communication libraries
* Occasional Guix user

- For my experiments
- Maintainer of several packages in Guix-HPC channel

Agenda

1. Software environment

2. EXx
3. EX

neriments without Guix

neriments with Guix

4. Reproducible experiments

Experimental protocol

1. Development, tries and failures on my laptop

2. Experiments on clusters

* Job scheduler (SLURM, OAR, ...)
* Non-interactive: submit a job executing a script, wait for its execution

* At one point: experiments whose results will be published

My software stack

User application Chameleon

Task-based runtime system “ StarPU

Network

communications Traces

Daltons, PlaFRIM, Grid5k,

Machine Occigen, ..

My software stacks!

Chameleon Chameleon Chameleon

StarPU
--enable-nmad --without-fxt
i.conf

StarPU

--enable-nmad

StarPU

StarPU

nmad
madmpi.conf

nmad

* Several possible combinations of building parameters
* Rebuild the whole stack!

X . X
e
Machines Machines

Experimental protocol and variants

1. Development, tries and failure on my laptop A main variant

2. Experiments on clusters
Comparaison of several

* Job scheduler (SLURM, OAR, ...) variants of the same stack :
* Non-interactive: submit a job executing a script, e nmad
wait for its execution :
_ _ _ * madmpi
* At one point ;. experiments whose results will be .

openmpi

published

Several variants simultaneously

How to switch from a variant to another one?

* Rebuild everything?
 Too long
* Prevent using simultaneously different variants

Level O: PATH, LD_LIBRARY_PATH, etc

Each variants installed in its own folder hierarchy

e ——prefix=$HOME/builds/nmad/ at compile-time

« Small script to wrap all these commands: ./build.sh nmad && ./build.sh madmpi

* PATH=$HOME/builds/nmad/bin LD_LIBRARY_PATH=$HOME/builds/nmad/lib to run

* OK in scripts for non-interactive jobs

* But in interactive jobs: need to remember all variables and paths to define, need to
type them...
9

Level 1: modules

Very common on HPC clusters

Each variants installed in its own folder hierarchy

e ——prefix=$HOME/builds/nmad/ at compile time

» Small script to wrap all these commands: . /build.sh nmad && ./build.sh madmpi
*PATH, LD_LIBRARY_PATH, ... defined in modules files

module load nmad

module unload nmad

module load madmpi

* OK in scripts for non-interactive jobs
* OK in interactive scripts

set name

set prefix

prepend-path
prepend-path
prepend-path
prepend-path
prepend-path
prepend-path
prepend-path

nmad

$HOME/builds/nmad/
PATH $prefix/bin
LIBRARY_PATH $prefix/lib
LD_LTIBRARY_PATH $prefix/lib
INCLUDE $prefix/include
C_INCLUDE_PATH $prefix/include

CPLUS_INCLUDE_PATH $prefix/include
PKG_CONFIG_PATH $prefix/lib/pkgconfig

10

Final boss of level 1

Harder :

* Comparaisons between branches of the same library

* Comparaisons between commits of the same library

* Comparaisons with and without a patch applied to a library

* Different folders, module files, ... again?
* In this case, source code is modified, not the result of its compilation!

* How to know which source code was used to build the software we are using...
* Right now?
* 6 months ago?

11

Guix! . 4

* No package installed with Guix (no guix install) G U ix

* Use of guix shell instead

* Required packages are built on-the-fly

./build.sh --starpu --chameleon openmpi
module load openmpi

module load starpu-openmpi _ _
_ > guix shell --pure chameleon -- mpirun ...
module load chameleon-openmpi

mpirun ...

12

Several variants simultaneously

v\
- ‘x -
with GY
- Chameleon depends on StarPU, which depends on OpenMPI

- Default variant
* nmad variant: nmad / /(J_?enMPI ExT

* openmpi variant:

" guix shell --pure chameleon -- mpirun ..

" guix shell --pure chameleon =--with-input=openmpi=nmad -- mpirun ..
*madmpi variant: o —

" guix shell --pure chameleon --with-input=openmpi=nmad-mini -- mpiruﬁ?;%%\\\
* Variant with £xt : b \\

" guix shell --pure chameleon --with-input=starpu=starput+fxt -- mpirun;\\\\\
~ - \‘

; o Existing packages in Guix-HPC

13

Package transformations

* https://guix.gnu.org/en/manual/devel/en/html_node/Package-Transformation-Options.html
* Simple package substitution:
* guix shell --pure chameleon --with-input=openmpi=nmad -- mpirun ..
* guix shell --pure chameleon --with-input=openblas=mkl -- mpirun ..
* Use a specific upstream Git branch:
*guix shell --pure chameleon --with-branch=starpu=coop-mcast -- mpirun ..
» Use a specific upstream commit:

*guix shell --pure chameleon --with-
commit=starpu=acae6e78df7a9475bbfbd26e33fe324b1f7bedce -- mpirun ..

* Apply a patch to package source code:

*guix shell --pure chameleon --with-patch=chameleon=./wait-graph.patch -- mpirun ..

14

https://guix.gnu.org/en/manual/devel/en/html_node/Package-Transformation-Options.html

Package transformations

 Combinations of several transformations!
* Be careful to transformation order:

* ——with-input=openmpi=nmad --with-branch=nmad=master : OK, master branch of nmad

* -——with-branch=nmad=master --with-input=openmpi=nmad : version specified in nmad package

* Visualize applied transformations with:

*guix graph -M 4 chameleon --with-input=openmpi=nmad --with-branch=nmad=master | xdot -

—
nmad@git.master | —— nmad@2021-11-05 }E
— —

- !

15

Final boss of level 1,
\N\t\\G“X

Harder :

* Comparaisons between branches of the same library

* Comparaisons between commits of the same library

* Comparaisons with and without a patch applied to a library

* Different folders, module files, ... again?
* In this case, source code is modified, not the result of its compilation!

* How to know which source code was used to build the software we are using...
* Right now?
* 6 months ago? 16

Final boss of level 1

\
X -
with cu
Harder :
« Comparaisons between branches of the same library 6’/:1,‘9
* Comparaisons between commits of the same library QSJ,,

* Comparaisons with and without a patch applied to a library

* Different folders, module files, ... again?
* In this case, source code is modified, not the result of its compilation!

* How to know which source code was used to build the software we are using...
* Right now?
* 6 months ago? 17

Final boss of level 1

|
&
with GW
Harder :
« Comparaisons between branches of the same library 6’/:1,‘9
* Comparaisons between commits of the same library QSJ,,

* Comparaisons with and without a patch applied to a library

Yo
¢ he

* Different folders, module files, ... again?
* In this case, source code is modified, not the result of its compilation! GO'GO'
/

* How to know which source code was used to build the software we are using...
* Right now?
* 6 months ago? 18

Reproducibility: the problem

guix shell —--pure chameleon -- mpirun ..

... 6 months later ...

guix pull
guix shell —--pure chameleon -- mpirun ..
* chameleon != chameleon

* Different package version of chameleon

* Different versions of chameleon’s dependencies

19

Reproducibility: the solution

* Export currently used channels (and their versions):
guix describe -f channels > channels.scm

* Explicitly use pinned channels:

guix time-machine --channels=./channels.scm --

shell --pure chameleon -- mpirun ..

* Backup channels.scm : to be sure to execute the same
code, even 6 months later

(list (channel

(name 'guix)
(url "https://git.savannah.gnu.org/git/guix.git")
(branch "master")
(commit

"ec66£84824198£380d20126d3e4b2ea795fd205a")
(introduction

(make-channel-introduction

"9edb3f66£d807b096b48283debdcddccfeaddbad"
(openpgp-fingerprint
"BBBO 2DDF 2CEA F6A8 OD1D E643 A2A0 6DF2 A33A 54FA"))))
(channel

(name 'guix-hpc-non-free)
(url "https://gitlab.inria.fr/guix-hpc/guix-hpc-non-free.git")
(branch "master")
(commit

"58aaac8c18773d900511d441e935145d73cdfcbe"))

(channel

(name 'guix-hpc)
(url "https://gitlab.inria.fr/guix-hpc/guix-hpc.git")
(branch "master")
(commit

"74840c47b744ad7342e7a86852831009a2831630")))

20

Reproducibility: making scripts available

* Making experiments (scripts) with reproducibility in mind

* Public Git repository with scripts and instructions for reproducibility:
* Detailed README to understand what is done, how, where, ...
e Contains channels.scm
* Instructions to use also without Guix

* Examples :

e https://gitlab.inria.fr/pswartva/paper-model-memory-contention-rl3y

* https://gitlab.inria.fr/pswartva/paper-starpu-traces-ri3y
21

https://gitlab.inria.fr/pswartva/paper-model-memory-contention-r13y
https://gitlab.inria.fr/pswartva/paper-starpu-traces-r13y

Reproducibility: in papers

* Ask SoftwareHeritage for a snapshot of your repository
* Repository available forever
* https://archive.softwareheritage.org/save/
* Provide a unique identifier, to find the saved repository

* In the paper:

A public companion contains the instructions to reproduce our study:
https://gitlab.inria.fr/pswartva/paper-model-memory-contention-r13y,
archived on https://www.softwareheritage.org/ with the ID
swh:1:snp:306£7¢c10cf69a5860587e5aad62b76070b798ecd.

22

https://archive.softwareheritage.org/save/

Conclusion: Guix’s advantages

* Very easy to move from a machine to another one***
* No wasted time to reinstall, recompile, look for appropriate modules, ...
* *As long as the job scheduler is the same
* **Require to parametrize/factorize scripts from the beginning

* More confidence in experiment executions
* Especially if | need to run them again (with different parameter, ...)

23

Conclusion: future work

* Use manifest files
* Put all parameters of guix shell In a file
e Good way to factorize code?

* Use on a machine without Guix

* guix pack

24

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24

