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Few words about me

* PhD Student @ Inria Bordeaux

* HPC : interactions between task-based runtime systems
and communication libraries
* Occasional Guix user

- For my experiments
- Maintainer of several packages in Guix-HPC channel
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4. Reproducible experiments



Experimental protocol

1. Development, tries and failures on my laptop

2. Experiments on clusters

* Job scheduler (SLURM, OAR, ...)
* Non-interactive: submit a job executing a script, wait for its execution

* At one point: experiments whose results will be published



My software stack

User application Chameleon

Task-based runtime system “ StarPU

Network

communications Traces

Daltons, PlaFRIM, Grid5k,

Machine Occigen, ..




My software stacks!

Chameleon Chameleon Chameleon

StarPU
--enable-nmad --without-fxt
i.conf

StarPU

--enable-nmad

StarPU

StarPU

nmad
madmpi.conf

nmad

* Several possible combinations of building parameters
* Rebuild the whole stack!

X . X
e
Machines Machines



Experimental protocol and variants

1. Development, tries and failure on my laptop A main variant

2. Experiments on clusters
Comparaison of several

* Job scheduler (SLURM, OAR, ...) variants of the same stack :
* Non-interactive: submit a job executing a script, e nmad
wait for its execution :
_ _ _ * madmpi
* At one point ;. experiments whose results will be .

openmpi

published



Several variants simultaneously

How to switch from a variant to another one?

* Rebuild everything?
 Too long
* Prevent using simultaneously different variants



Level O: PATH, LD_LIBRARY_PATH, etc

Each variants installed in its own folder hierarchy

e ——prefix=$HOME/builds/nmad/ at compile-time

« Small script to wrap all these commands: ./build.sh nmad && ./build.sh madmpi

* PATH=$HOME/builds/nmad/bin LD_LIBRARY_PATH=$HOME/builds/nmad/lib to run

* OK in scripts for non-interactive jobs

* But in interactive jobs: need to remember all variables and paths to define, need to
type them...
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Level 1: modules

Very common on HPC clusters

Each variants installed in its own folder hierarchy

e ——prefix=$HOME/builds/nmad/ at compile time

» Small script to wrap all these commands: . /build.sh nmad && ./build.sh madmpi
*PATH, LD_LIBRARY_PATH, ... defined in modules files

module load nmad

module unload nmad

module load madmpi

* OK in scripts for non-interactive jobs
* OK in interactive scripts

set name

set prefix

prepend-path
prepend-path
prepend-path
prepend-path
prepend-path
prepend-path
prepend-path

nmad

$HOME/builds/nmad/
PATH $prefix/bin
LIBRARY_PATH $prefix/lib
LD_LTIBRARY_PATH $prefix/lib
INCLUDE $prefix/include
C_INCLUDE_PATH $prefix/include

CPLUS_INCLUDE_PATH $prefix/include
PKG_CONFIG_PATH  $prefix/lib/pkgconfig
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Final boss of level 1

Harder :

* Comparaisons between branches of the same library

* Comparaisons between commits of the same library

* Comparaisons with and without a patch applied to a library

* Different folders, module files, ... again?
* In this case, source code is modified, not the result of its compilation!

* How to know which source code was used to build the software we are using...
* Right now?
* 6 months ago?
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Guix! . 4

* No package installed with Guix (no guix install) G U ix

* Use of guix shell instead

* Required packages are built on-the-fly

./build.sh --starpu --chameleon openmpi
module load openmpi

module load starpu-openmpi _ _
_ >  guix shell --pure chameleon -- mpirun ...
module load chameleon-openmpi

mpirun ...
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Several variants simultaneously

v\
- ‘x -
with GY
- Chameleon depends on StarPU, which depends on OpenMPI

- Default variant
* nmad variant: nmad / /(J_?enMPI ExT

* openmpi variant:

" guix shell --pure chameleon -- mpirun ..

" guix shell --pure chameleon =--with-input=openmpi=nmad -- mpirun ..
*madmpi variant: o —

" guix shell --pure chameleon --with-input=openmpi=nmad-mini -- mpiruﬁ?;%%\\\
* Variant with £xt : b \\

" guix shell --pure chameleon --with-input=starpu=starput+fxt -- mpirun;\\\\\
~ - \‘

; o Existing packages in Guix-HPC
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Package transformations

* https://guix.gnu.org/en/manual/devel/en/html_node/Package-Transformation-Options.html
* Simple package substitution:
* guix shell --pure chameleon --with-input=openmpi=nmad -- mpirun ..
* guix shell --pure chameleon --with-input=openblas=mkl -- mpirun ..
* Use a specific upstream Git branch:
*guix shell --pure chameleon --with-branch=starpu=coop-mcast -- mpirun ..
» Use a specific upstream commit:

*guix shell --pure chameleon --with-
commit=starpu=acae6e78df7a9475bbfbd26e33fe324b1f7bedce -- mpirun ..

* Apply a patch to package source code:

*guix shell --pure chameleon --with-patch=chameleon=./wait-graph.patch -- mpirun ..
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https://guix.gnu.org/en/manual/devel/en/html_node/Package-Transformation-Options.html

Package transformations

 Combinations of several transformations!
* Be careful to transformation order:

* ——with-input=openmpi=nmad --with-branch=nmad=master : OK, master branch of nmad

* -——with-branch=nmad=master --with-input=openmpi=nmad : version specified in nmad package

* Visualize applied transformations with:

*guix graph -M 4 chameleon --with-input=openmpi=nmad --with-branch=nmad=master | xdot -

—
nmad@git.master | —— nmad@2021-11-05 }E
— —

- !
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Final boss of level 1,
\N\t\\G“X

Harder :

* Comparaisons between branches of the same library

* Comparaisons between commits of the same library

* Comparaisons with and without a patch applied to a library

* Different folders, module files, ... again?
* In this case, source code is modified, not the result of its compilation!

* How to know which source code was used to build the software we are using...
* Right now?
* 6 months ago? 16
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Final boss of level 1
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with GW
Harder :
« Comparaisons between branches of the same library 6’/:1,‘9
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* Comparaisons with and without a patch applied to a library
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* Different folders, module files, ... again?
* In this case, source code is modified, not the result of its compilation! GO'GO'
/

* How to know which source code was used to build the software we are using...
* Right now?
* 6 months ago? 18



Reproducibility: the problem

guix shell —--pure chameleon -- mpirun ..

... 6 months later ...

guix pull
guix shell —--pure chameleon -- mpirun ..
* chameleon != chameleon

* Different package version of chameleon

* Different versions of chameleon’s dependencies
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Reproducibility: the solution

* Export currently used channels (and their versions):
guix describe -f channels > channels.scm

* Explicitly use pinned channels:

guix time-machine --channels=./channels.scm --

shell --pure chameleon -- mpirun ..

* Backup channels.scm : to be sure to execute the same
code, even 6 months later

(list (channel

(name 'guix)
(url "https://git.savannah.gnu.org/git/guix.git")
(branch "master")
(commit

"ec66£84824198£380d20126d3e4b2ea795fd205a")
(introduction

(make-channel-introduction

"9edb3f66£d807b096b48283debdcddccfeaddbad"
(openpgp-fingerprint
"BBBO 2DDF 2CEA F6A8 OD1D E643 A2A0 6DF2 A33A 54FA"))))
(channel

(name 'guix-hpc-non-free)
(url "https://gitlab.inria.fr/guix-hpc/guix-hpc-non-free.git")
(branch "master")
(commit

"58aaac8c18773d900511d441e935145d73cdfcbe"))

(channel

(name 'guix-hpc)
(url "https://gitlab.inria.fr/guix-hpc/guix-hpc.git")
(branch "master")
(commit

"74840c47b744ad7342e7a86852831009a2831630")) )
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Reproducibility: making scripts available

* Making experiments (scripts) with reproducibility in mind

* Public Git repository with scripts and instructions for reproducibility:
* Detailed README to understand what is done, how, where, ...
e Contains channels.scm
* Instructions to use also without Guix

* Examples :

e https://gitlab.inria.fr/pswartva/paper-model-memory-contention-rl3y

* https://gitlab.inria.fr/pswartva/paper-starpu-traces-ri3y
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https://gitlab.inria.fr/pswartva/paper-model-memory-contention-r13y
https://gitlab.inria.fr/pswartva/paper-starpu-traces-r13y

Reproducibility: in papers

* Ask SoftwareHeritage for a snapshot of your repository
* Repository available forever
* https://archive.softwareheritage.org/save/
* Provide a unique identifier, to find the saved repository

* In the paper:

A public companion contains the instructions to reproduce our study:
https://gitlab.inria.fr/pswartva/paper-model-memory-contention-r13y,
archived on https://www.softwareheritage.org/ with the ID
swh:1:snp:306£7¢c10cf69a5860587e5aad62b76070b798ecd.
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https://archive.softwareheritage.org/save/

Conclusion: Guix’s advantages

* Very easy to move from a machine to another one***
* No wasted time to reinstall, recompile, look for appropriate modules, ...
* *As long as the job scheduler is the same
* **Require to parametrize/factorize scripts from the beginning

* More confidence in experiment executions
* Especially if | need to run them again (with different parameter, ...)
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Conclusion: future work

* Use manifest files
* Put all parameters of guix shell In a file
e Good way to factorize code?

* Use on a machine without Guix

* guix pack
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